
Version 1.0

dan farmer
zen@trouble.org

1/28/2013
IPMI: FREIGHT TRAIN TO HELL

Abstract
Intel’s Intelligent Platform Management Interface (IPMI), which is implemented and
added onto by all server vendors, grant system administrators with a means to manage
their hardware in an Out of Band (OOB) or Lights Out Management (LOM) fashion.
However there are a series of design, utilization, and vendor issues that cause complex,
pervasive, and serious security infrastructure problems.

The BMC is an embedded computer on the motherboard that implements IPMI; it enjoys
an asymmetrical relationship with its host, with the BMC able to gain full control of
memory and I/O, while the server is both blind and impotent against the BMC.
Compromised servers have full access to the private IPMI network
The BMC uses reusable passwords that are infrequently changed, widely shared among
servers, and stored in clear text in its storage. The passwords may be disclosed with an
attack on the server, over the network network against the BMC, or with a physical attack
against the motherboard (including after the server has been decommissioned.)
IT’s reliance on IPMI to reduce costs, the near-complete lack of research, 3rd party
products, or vendor documentation on IPMI and the BMC security, and the permanent
nature of the BMC on the motherboard make it currently very difficult to defend, fix or
remediate against these issues.

Introduction
Imagine trying to secure an important group of servers that are essentially black boxes:
not only are they full of old code and attack points, but there isn’t any documentation on
how they operate; you’re unable to login, patch or fix problems; you’re unable to run any
server-based defensive, anti-malware, or audit software; and to top it off all the servers
share reusable passwords that are stored in clear text. These insecure servers are not
only pervasive but allow stealth control and monitoring over all the other servers on your
network. Welcome to the 21st millennium.

There are at least twice as many servers in your data center and networks than you might
think. Modern servers have an embedded computer called the Baseboard Management
Controller (BMC), which has its own CPU, RAM, storage, and physical network interface
that all operate independently of the main server. The BMC was designed to facilitate
out of band (OOB) operations and implement the Intelligent Platform Management
Interface (IPMI), a standard created by Intel and a consortium of large server vendors;
today nearly 200 computer manufacturers are on Intel’s Adopter’s List1.
IPMI is mostly used for low-level tasks like rebooting servers, monitoring physical
sensors (e.g. temperature, memory health, fan speed, etc.), providing virtual remote
consoles and so on. However, due to its design, IPMI could also provide a mechanism to
spy, control, and modify data and network traffic in a fashion that is about as close to
invisible as can be imagined. To top it off IPMI access is governed by a clear text (i.e.
unencrypted) set of passwords stored on the motherboard between all servers in a
management group.

	 2	

That thanks to IPMI and a widespread confluence of issues – including vendor design
and architectural decisions, the standards and resulting implications on operations and
security, how it is used operationally within organizations, and an almost complete lack
of awareness or dialogue or research on the subject –we’ve dug ourselves a serious digital
hole about as large as the Grand Canyon. To compound matters it’s not a single problem
– none of them individually are showstoppers – but due to the cascading nature of issues
the problems add up to something more. Unfortunately all these factors take a bit of
explanation, hence the length of this document (I’ve also written a Reader's Digest
version, but it might give more questions than answers depending on your knowledge
level.)
I must note up front that this paper’s title is a bit unfair to IPMI, which does have its own
issues, but those are greatly amplified by factors that have nothing to do with the
specification. But in an attempt at clarity and simplicity I’ll be using “IPMI” as a catchall
phrase for several things – the specification, the BMC, how customers actually utilize it,
the vendor and how they add features on top of the spec, etc. I hope the IPMI experts
will forgive me for potentially slandering pure IPMI, and I’ll try to distinguish who is the
root cause of the various issues.
The severity of the situation mainly depends on three factors: the amount of servers in
IPMI management groups, the amount of time between password changes within
groups, and the difficulty of exploiting or abusing the BMC or the IPMI interface. If I’m
off the mark on any of these it could be much less damaging than I claim. This is further
clouded because hard data is perniciously difficult to get on such sensitive subject
matter. In any case this paper details my analysis to date.
Those that are familiar with IPMI can safely skip or skim section I. I cover some
architecture and implementation details of the BMC in section II; IPMI usage and
deployment in the wild in III; section IV has a list of specific security problems, and then
I end with a summary and some thoughts on where we might go from here.
There are so many different implementations, versions, vendors, and ambiguities I’ve
tried to make the writing clearer by putting many of the caveats and one-offs in footnotes
out of the path of general reading. And while I thank some people for help and reviewing
my work (see the acknowledgements at the end), any omissions, errors, falsehoods or
whatnot are solely my responsibility. It’s a sprawling topic, far too big to cover in these
pages, so I’ve also placed some additional background data, notes on vendors and
specific implementations, along with links, references, and the like at my web site,
http://fish2.com/ipmi.

Disclaimer

I’d like to emphasize that I’m not an IPMI expert. I’d never used IPMI, and knew about
as much as most people (e.g. nothing) until a couple of months ago when I got curious.
I’m doing this completely on my own free time, although I did leverage three servers that
are for my DARPA based Cyber Fast Track program research.2 This handful of servers
along with some network scanning, a variety of conversations with knowledgeable
people, and a whole lot of reading is what I base the entire paper on.
I did contact CERT and some vendors about the issues in
this paper but no one has been interested in any sort of
formal response or communication. Indeed, there is a
definite sense that the situation isn’t as dire as I proclaim.
However, I’ll note that this all has been implemented and

	 3	

expanded by vendors with absolutely no scrutiny or oversight from the security
community and researchers, which hasn’t traditionally been a metric for security
success. Finally: this isn’t meant to be a scientific paper with measurements and
hypothesis and results; given the breadth of the topic it’s more of a porky watercolor, a
sketch, or essay that attempts to draw fairly broad conclusions on a bit of disconcerting
evidence. I’ll stand by my work and am content to disagree with the world at large (as is
my wont), but will remain open to discourse if anything comes of this, and will be happy
to change my mind as I learn more.

Table of Contents
Abstract	 	 ..	 1	
Introduction	 ...	 1	
Disclaimer	 ...	 2	
I.	 IPMI	 	 ..	 3	
II.	 The BMC	 ...	 5	
III.	 IPMI in the Wild	 ...	 10	
IV.	 Security Proclamations	 ...	 12	
V.	 Into You Like a Train (Conclusion)	 ..	 16	
Bibliography	 ...	 18	
I’d like to thank….	 ..	 21	

I. IPMI

By far the most popular OOB protocol today is the Intelligent Platform Management
Interface, aka IPMI, which communicates to a server via the service processor or
baseboard management controller (BMC.)
The IPMI system is actually composed of three specifications: the “Intelligent Platform
Management Interface (IPMI), Intelligent Platform Management Bus (IPMB) and
Intelligent Chassis Management Bus (ICMB).”3 It was initially developed by Intel, Dell,
HP, and other large corporations; version 1.0 specifications published in 1998. Version
1.5, which is still in fairly wide use, came out in 2001, and 2.0 was rolled out in 2004 (the
last revisions being published June 2009.) 2.0’s main security contribution was to
introduce the option of network encryption.
Server and firmware vendors add features and use a variety of names; Dell calls theirs
iDRAC, Hewlett Packard iLO, IBM IMM, etc, but in the end it’s all IPMI under the hood.
Intel launched a similar effort for personal computers called Active Management
Technology (AMT) that shares many features with IPMI, but while hazardous I don’t
personally view it to be as threatening as IPMI.
IPMI was designed to be resilient – the BMC is able to communicate with its server or
with other computers even when the network is down, the server power is off, the
operating system or disks crash, or when other catastrophic failures happen (which is
pretty cool if you think of it.)
The BMC essentially provides a data abstraction layer to the server’s physical hardware
via an IPMI programming interface. This makes it simple for monitoring tools such as
Nagios, Cacti, etc. to extract this information on an ongoing basis via IPMI rather than
mucking around with the firmware or sensors directly.

	 4	

The most common use of IPMI is to monitor server physical health and status via its
sensors; temperature, memory errors, disk health, fan speeds, and the like may be
captured and associated alarms triggered when something is amiss. IPMI can also
reboot the system upgrading the BIOS, install an operating system, or other low-level
management tasks.
As IPMI’s popularity grew, users and marketing folks naturally started asking for more
features, and even more naturally vendors were happy to supply. As a result more and
more functionality has been stuffed into the BMC, with most vendors supply at least a
dozen or more different services including web, mail, and SNMP servers.
There seem to be three or more vendors involved with any given computer’s
implementation: the chip maker, the one or more firmware adder-onners, and the final
server vendor who may add their own functionality and possibly an additional
management interface for the end users.
Commonly the BMC is physically connected to the South Bridge, a core component on a
motherboard that controls most I/O. The IPMI specification also defines interfaces used
to enable and talk directly to other subsystems such as management controllers, add-in
cards, various busses such as SMBus, I2C etc.
Figure 1, courtesy of the Intel Development Forum, might help illustrate IPMI’s place in
the management stack – traditional management systems deal with the higher level
concepts of applications, operating systems, and the like – and something was needed to
deal with the low-level hardware issues (IPMI is also used by supercomputers, virtual
controllers, clustered computers, etc. to spin up and down new resources on demand.)
Through efforts such as the Common Information Model (CIM) IPMI is providing its
services to higher and higher levels of abstractions in an effort to provide a unified
administrative interface. Support for popular scripting languages and web interfaces are
de rigueur.

From the start OOB was meant to communicate when the bits hit the fan; initially people
skipped the normal user to server communication channels and used such reliable but
slow or pricey technology like analogue POTS lines, dedicated Internet connections or
other independent networking technologies; the important part was that it was separate
from the main network to be protected from the same outages that might bring down the
network. This also gave an important amount of security separation, making it very

Figure	 1	

	 5	

difficult for anyone but insiders to know anything about the OOB machinery for a given
network or datacenter. As time went on, interaction was deemed more desirable (e.g.
video, mouse, etc.), cost cutting became more important, and the communication
separation became less frequent; these days instead of having a network completely
devoted to OOB its more common to segregate traffic with VLANs or share a non-
routable network with 3rd tier database or other non-internet facing servers.
If you’re only worried about the one-password for all those machines, the IPMI
specification itself does offer some help of sorts in the RMCP+ Authenticated Key-
Exchange Protocol, or RAKP. Cacote & Masi describe4 using this to create new
passwords every day for every system, but it was only used on about 2,000 managed
hosts, and it seems to involve some very complicated machinery. RAKP has flaws as
well, however, including allowing people to use null passwords (making it useless), along
with the fact that the IPMI specification says that it doesn’t have “a secure, confidential
mechanism for installing and distributing user keys between BMCs and remote
consoles”, which dampens my enthusiasm. Search engines show very little
documentation or examples of use, which probably means not a lot of people use it.
IPMI is a flexible specification that allows a lot of different configurations, and like most
systems some are less desirable than others, security-wise, and yet there’s almost no
community, research, or help for users wanting to secure their systems. There’s a real
need for security checklists, articles, a security FAQ, software tools, and discussion about
the implications of IPMI and all it entails.
I’ve placed some additional technical security notes as well as pointers to other resources
on my site.

II. The BMC

There is a wealth of information out there about the functionality of IPMI, but it’s hard
to find much at all about the BMC or the various vendor implementations. It’s a real
server with a real OS and some fairly complex interactions with its host server and the
outside world. So this is a high level gloss is primarily based on explorations with my lab
machines along with BMC flash upgrades from other vendors. If you’re keenly interested
you might read a slightly expanded version5 I wrote with some additional details.
Figure 2 shows a high-level hardware architectural diagram of a fairly typical BMC, in
this case a Winbond WPCM450:

Figure	 2	

	 6	

Obviously implementations will vary, but the BMC is hooked up to the Southbridge, the
area on a motherboard and responsible for the server’s I/O. The BMC is a small
computer running a minimalistic OS (Linux being common6) with an independent CPU
(often RISC/ARM-based), RAM, storage, and Ethernet adaptor (although it can share its
server’s network interfaces as well.) There are just a handful or two of major subsystem
vendors that design and manufacture the IPMI ecosystem and add-on firmware for the
major server vendors, seemingly all made in China7.

The ARM 926EJ’s datasheet, used by Nuvoton, the manufacturer of one of my BMCs,
said it cruises along at about 200 MFLOPS – faster than the first Cray super computer.
Since the BMC actually does anything useful about 1% of 1% of the time perhaps we
could start harnessing them for SETI or use them as failover servers for light duties. A
few hundred million Crays just lying around; perhaps IPMI is simply a missed
opportunity to better our world?
Open source and in particular GPL’d software is heavily leveraged – the kernel, OS, boot
loader8, most of the network services, etc., so in theory the vendors should be sharing the
details of their implementations; unfortunately I’ve not been very successful at finding
many details or how to pry such things loose.
The BMC isn’t a mere parasite: it runs independently of the main operating system and
is always running as long as any power is supplied to the computer. Other than the
standard IPMI interfaces used to query its data I know of no software method that would
discover activity or details within a BMC unless you’re logged into the BMC; physical
monitoring via JTAG or other instrumentation might prove fruitful. All communication
is handled by the BMC’s kernel and supporting programs, so even the most elemental of
requests could return false data.
The IPMI specification explicitly mentions how useful System Management Interrupts
(SMIs) can be for IPMI, although they’re not officially part of the specification. SMI’s are
the highest priority non-maskable interrupts on a computer, and when asserted the
processors are shifted into System Management Mode (SMM9) and the SMI handler –
simply a bit of code by the vendor – is free to fold, spindle, or mutilate the server in any
way desired in a nearly invisible fashion. At this point the IPMI specification puts it
succinctly – the BMC has “full access to system memory and I/O space10.”
After scanning lots of hardware literature, marketing material, and vendor
documentation it seems as though the BMC usually seems to have the ability to use SMI
handlers to enter SMM mode. Even if it didn’t, however, with its low-level hardware
connections and existing power over its host it would be hard to stop it from doing
anything it wants.
Communications
There are four main ways of communicating to the BMC directly: there’s an interactive
shell, a web interface, various command line tools (like ipmitools; by default this is on
UDP port 623), and finally via series of network services (e.g. virtual media, remote
consoles, SNMP, etc.) that can be used either interactively or via automated tools to
manage or query as to the health and well-being of the BMC and its host. Ultimately
most, if not all of these capabilities are implemented just like on a normal Linux server:
as a daemon or agent on the BMC’s OS. Not all of these features are actually in the IPMI
specification but are nearly universally on the BMC and packaged up as part of the
vendors OOB offering.

Most of the time IPMI must be explicitly turned on11 via the BIOS/UEFI/system
firmware or as part of a special vendor custom order (there are stories of some vendors

	 7	

having it turned on by default, which is a serious risk), but it requires no configuration or
special software on the host OS to be running (although you have to configure the server
in order to communicate with the BMC.) Many servers have a dedicated management
port for IPMI, but it can also share the network adaptor of the host OS12. Once a power
cord is plugged in the BMC will start up, whether or not the host system has been
activated.
Authentication

IPMI authentication is handled via a small set (usually from 10-16) of local IPMI users
can be created on each channel of the BMC. They can be given passwords of up to 16
(IPMI 1.5) or 20 (IPMI 2.0) characters, which are both stored in clear text13. Because the
client never sends the password (cryptographic hashes are used instead; see the end of
the previous section) IPMI also can’t use out-of-the-box standard network
authentication; while most vendors claim to support the usual suspects like LDAP, AD,
RADIUS, etc. they have to resort to some sort of hackery (there are rumors that in some
cases they simply append the plain text password as an attribute, not quite what you
might want; in any case it’s different than what one might expect.) But even if network
authentication is used you still want that native, host-based fallback mechanism so you’ll
have console access during emergencies – for instance when the network or RADIUS or
AD servers are down; indeed some vendors don’t let you disable the BMC based
authentication at all to prevent you from locking yourself out.

Most IPMI actions explicitly require a password to be entered. There are a few special
cases, however.
If you’re logged into a server with an administrative account you enjoy a special
relationship with IPMI; you can perform any IPMI-related action (including enabling
IPMI) on that local server and BMC without any authentication whatsoever. This means
that if a server is compromised local IPMI passwords or accounts may be modified,
deleted, or created, network services enabled, etc. If cipher zero (0) is enabled any user
may be logged into without any password. It’s usually possible to store SSH certificates
on the BMC to allow a password free login (with the appropriate private key, of course.)
This may be problematic from a management standpoint; who knows if that SSH key is
valid, or whom it’s really from? You also need to ensure a process is in place to register
all locations that have the key along with a removal strategy after a user is terminated or
their system is compromised (which would then allow free access to all of the BMCs and
IPMI managed systems her key is on.) Some vendors also support single-sign on
authentication; if that is hijacked or the user’s normal network authentication can be
compromised then all IPMI managed servers would be in trouble as well.
The IPMI passwords have to stored somewhere on the BMC’s subsystem. Some vendors
just stick it in a file14 in plain sight, but it appears that most try to at least nominally hide
it.
Network Services
A BMC generally runs a half-dozen or so network services out-of-the-box, but a dozen or
more are typically available through the web or command line interfaces. Among the
usual cast of characters there’s web (HTTP and HTTPS), SSH, telnet, SMTP Virtual
KVM/Keyboard/Mouse, Network USB and/or Virtual Media, SOL (Serial over Lan),
VNC, WS-MAN, DHCP, SNMP and more – often vendors have a variety of ports for their
undocumented special purpose software. And while not listening to network ports they
also have various client programs that talk to the network like AD, LDAP, RADIUS, DNS,
mail (SMTP) and more.

	 8	

Of particular and perhaps visceral notice is that most BMCs now offer hooks to
Microsoft’s RDP/Terminal Services and VNC for a better view of the server side. Text or
graphical screenshots or even video recording console activity are common features (the
images or movies are stored on the BMC’s flash file system.)
Virtual Media/USB
Along with the remote console feature, virtual media is one of the main reasons people
really like OOB management. While it’s not in the IPMI specification I don’t think any
vendor doesn’t offer the feature on the BMC, although sometimes only with their
advanced or enterprise version (for an additional fee, of course.)
Using the virtual media feature you can mount Disk images, USB sticks, DVDs/CDs, and
the like from anywhere on the net and they’ll appear immediately as a file system on thje
host exactly like their physical counterparts (beware of autorun!15) Virtual media is
heavily used for provisioning or bootstrapping new servers or applications, remotely
installing or reinstalling the OS, deploying diagnostic tools, etc.
A few security notes
I won’t go too far into the security possibilities here (see section IV for more on that) but
it’s worth mentioning that a fair bit of the BMC’s capabilities aren’t found anywhere but a
BMC; virtual media, SOL, sensor data handling, the IPMI protocol, etc. The BMC is
constructed with many millions of lines of code; a mixture of moderately popular open
source blended with propriety code from a small number of vendors. I haven’t found any
non-vendor studies or efforts to audit or test for security issues. This is what they call in
the biz a green field opportunity, and there is a virtual certainty there are many, many
vulnerabilities yet to be uncovered. A few areas ripe for exploitation:

• The web server –BMCs have a large number of web pages that execute JavaScript,
accept user data and input, transfer data over the network, etc.

• More traditional but non-web network services (for both authenticated and non-
authenticated users)

• Network stack (TCP/UDP/VLAN/etc.)

• IPMI protocol handling

• Logging & event handling

• SMASH/CLP interactive shell

• Server to BMC communications – IPMI protocol but also the rest of the bus and low-
level communication the kernel has access to

• Cryptographic attacks (certificates, protocol handling, etc.)

• The surface or interface between low-level hardware and BMC management and
communication software

Recent research suggests that older code is more vulnerable than recent; because of the
nature of embedded systems and the frequency of firmware updates the code on BMCs
will be usually be several years old, adding to potential danger.16/17 There has also been a
lot of research and work done with embedded Linux on routers and cheap Wi-Fi boxes
that could presumably be leveraged to investigate BMCs.
Denial of service attacks targeting a BMC are trivial to execute, especially if encryption
has been turned on. The CPUs on these things are fairly anemic; they’re slow serving up

	 9	

a web page, let alone dealing with lots of traffic or computation. I routinely crashed my
BMCs or wedged network services by simply executing legitimate or somewhat
legitimate commands. Indeed, the rmcpping documentation observes “that some
remote BMCs can get ‘confused’ and delay packet responses if duplicate packets (with
duplicate sequence numbers) are sent in succession very quickly.”18
Virtual media is also perhaps the most straightforward way to take control the server
host, or at least the easiest to explain – simply mount a live CD with an OS of your
choice, ensure the boot order is correct, and then reboot the system. An ephemeral OS
booted in RAM could explore the disks, applications and data, which could be folded,
spindled, and/or mutilated. This is fast, as well; this could take only a minute or two,
and before operations explores the any failures of the server an attacker can reboot the
server with things pretty much back to normal due to some mysterious failure.
While you can turn off some of the network services, others often can’t be shut down
(like the web server that allows you to configure the system) unless you turn off IPMI
from the BIOS configuration. And even if a service is disabled they can easily be re-
enabled if an attacker has physical access to the server, an administrative IPMI account
or root on the server.
Vulnerabilities uncovered are presumably shared for all servers sharing the BMC
firmware for a particular vendor – and, if the firmware manufacturer writes code for
more than one server vendor, they may well be shared by other BMCs as well.
Unfortunately it’s not widely known who the underlying maker is of a particular BMC is.
And these are special vulnerabilities: they don’t grant direct access to the server, they
instead give you shell on the BMC, which is a very powerful place to be.
This is an unusual type of vulnerability: normally when a problem is found we think it’s
not a big deal, we can just remove the software or apply a patch. In the case of IPMI you
can do neither. It’s really a pernicious problem –if a vulnerability exits it means that you
have latent backdoors into your servers that can be enabled at any time either by the
BMC or the server – an attacker could easily set up scripts that (re)enable the problem at
regularly timed intervals or in other nefarious ways.
And who knows what the security bug list that the vendors know about, or the people
who wrote the code? I would imagine an author of some of this code might well be a
formidable enemy. After finding an undocumented feature on my Dell server19 that
would enable shell access on the BMC one might wonder: what else is out there on these
black boxes? It appears that the vast bulk of BMCs are manufactured in one country –
China. I’ve personally nothing against China in particular; it’d be of similar concern if
any single country had such control over such a sensitive piece of technology that is such
a sublime possibility for spying and espionage.
Finally, a gut feeling – although I’ve admittedly a small sample space, in the handful of
BMCs I’ve examined it all seemed… well, a bit sloppy. There are developer files left lying
around (like “1ogin.html” – starting with the numeral 1 – and another named
“login.html” in the main web content area), file duplications in different areas, poor
coding practices in the web pages, system startup and maintenance scripts20, many
binaries that the BMCs didn’t need (Dell had such gems as tcpdump and gdb21!), files
that are referenced but don’t exist, repeated log entries of missing or broken elements
(that are never looked at, since only someone logging into the BMC can see them), etc.,
etc. I would also get different behavior if using the Web or directly talking to the IPMI
interface also with respect to login timeouts and other issues. Combine this with the
crashing and flakiness; when I’ve seen such messiness it spoke of seeming poor process

	 10	

and execution, and, more to the point, an indicator of security problems that are simply
waiting to be unveiled.

III. IPMI in the Wild

Other than the people who actually use IPMI almost no one seems to know what it is, let
alone how it’s actually used in the Real World™. Given the flexibility of technology there
can be vast differences in implementation, but there are some common threads.

IPMI generally plays a substantial role helping the basic role of system administrators
(and all the assorted and sundry varieties): minimizing costs while maximizing
availability and resources to their users. In large part it does this by giving close-enough-
to-physical-access while keeping skilled network, host, and application administrators at
their desks or at home instead of driving once more to the data center to reboot a system
or troubleshoot a problem.
Vendors clearly state you should keep IPMI traffic on its own separate network, but for
cost reasons this is rarely done (I’ve never actually seen it or heard of anyone who
actually does this, but presumably some do somewhere.) Instead, as previously
mentioned, either VLANs or non-routable networks (and sharing space with all those
systems that few ever interact with but are pretty crucial to running a network or
datacenter). System administrators know that IPMI is a loaded gun, so intentionally
placing an IPMI interface on an unprotected network segment or the Internet is rare, but
it still happens from time to time. Remote access to IPMI networks are instead protected
by some of the highest security in the organization, via VPNs or other network choke
points that require strong authentication to enter.
To do anything with IPMI you must authenticate oneself22; since network authentication
isn’t commonly used a single password (or a small set of passwords) is shared for large
blocks of computers. The IPMI networks are generally grouped by geography or
by system management or provisioning groups rather than by the usual network
topologies and security groupings of application or service offerings. This is an
important distinction, and I’ll repeat – IPMI passwords are generally duplicated
throughout blocks of servers that are aligned with operational groups, not by the server’s
function, business owners, and the like. While they’re nothing stopping anyone from
using a variety of methods to manage the passwords, it’s often done this way because the
same people managing IPMI are not the same people managing the higher layers of the
computer, plus it’s the easiest way to deal with a complex problem.
The IPMI network, rather being segregated or split into security zones, is usually one big
flat area – it transcends the usual network and security architecture and affords
unfettered access to large amounts of important systems that cut across organizational
boundaries. This is by intent, and the idea is that no one but very special and trusted
people should be mucking around back there. To make things more interesting the usual
security measures and network monitoring usually isn’t done in these back networks for
the same reason they’re shared with IPMI in the first place – it’s prohibitively expensive
implement, and the real threat is thought to be outside of the network23.
Large organizations – especially the more modern or tech-savvy ones – often have very
large IPMI groupings of managed servers; 100,000 or more are not unheard of (IPMI is
especially important for bootstrapping installations, provisioning and maintenance.)
This isn’t really new: the computer-as-a-utility model means huge data centers that
stamp out lots of servers, and running internal or external clouds is pretty standard these
days. In these larger groupings IPMI plays a big role in provisioning via PXE

	 11	

bootstrapping and fast provisioning in particular. The IPMI passwords and
configuration are usually set when the machine is initially provisioned or via vendor
special custom builds at the factory.
While most server vendors have tried to sugarcoat the pig to ease system administration
burdens, most server vendors aren’t hailed for solving enterprise-level management
problems; they are also often active in their efforts to create products that don’t
interoperate with competing vendor solutions. As a result any substantial heterogeneous
IPMI customer implementation generally stick with a minimalistic core of features that
can be automated or used in a somewhat cross-vendor fashion, rather than fully
implement all the rich vendor sets of features.
Another this-doesn’t-help-IPMI is that no one really knows where all those servers are.
As amazing as it might seem to those not in the server management business, actually
knowing just the basics about a random server (e.g. where it is, what it does, who the
business owner is – heck, if it even exists) with, say, 90-95% overall accuracy is doing a
tremendous job. There’s an entire research field and sets of solutions (that don’t work
very well) dealing with the problem of building a somewhat Sisyphean configuration
management database (CMDB), in the hope that you’d have an Oracle that knew all.
Across large enterprise the numbers get even bleaker. This in turn means that changing
IPMI passwords is very painful and rarely done. The usual network based user and
password management tools don’t work, and changing most of the passwords doesn’t
cut it: if you miss any you’re forced to have to keep track of the older passwords used as
well, in case you run across a system that was missed in the last round of changes.
Essentially the password management situation is using static configuration files in a
large dynamic situation – horrors such as the old “HOSTS.TXT” files and its friends are
the reason we moved to DNS and network authentication all those years ago; even 30
years ago we knew that static just doesn’t scale or work in large networks24.
Most organizations of any size have a small group of trusted individuals that know the
IPMI password or how to get it (e.g. a physical safe or lockbox.) If one of the anointed
few left the organization you’d just kind of hoped that they wouldn’t be evil rather than
go through the monumental pain of change. Plus the general feeling seems to be that
they’d have to have inside access to the datacenters to have it make any difference, as the
server’s IPMI network interfaces weren’t exposed to the general populace.
In reality IPMI passwords aren’t available to a few trusted souls, however. Management
consoles and automation scripts have them embedded in configuration files or in the
code. Mobile IPMI management apps are flourishing and routinely save the password
on the device. Browser caches on administrator machines are another good place to
look. Backup servers have a wealth of passwords stored on them, often spanning
different IPMI domains.
Mistakes happen, as well; I had a good source inform me that a Fortune 500 company
accidently posted their IPMI password that was embedded in some software to Github (a
popular web-based software development site) – a password that was used to manage
over 100,000 servers – and was then quickly and quietly pulled it back.
In sum the current security strategy is to only allow the small and cool group of kids the
magic password and try to keep the attackers away from those interfaces at any cost.
Such things are hard to measure since no one is talking, but I’d guess that the lifespan of
IPMI passwords in larger IPMI groups could easily be measured in years.

	 12	

IV. Security Proclamations

Here’s where I go from background facts to my own IPMI security assertions.

Certainly it’s bad enough if someone compromises a server’s BMC, because it’s meant to
be an opaque box that can’t be monitored, plus it has a lot of power over the server it
resides on. But the real win is to get an IPMI group password, because that can grant
access to large blocks of servers in a very stealthy fashion. It’s a real killer because in
addition to the damage that can occur you usually will never spot it leaking out, so you
can’t be certain who knows the password.
I’m going to try and focus on systemic security issues, not any vendor bugs or
implementation details. Unfortunately the BMC server is lacking some of the very basic
security controls we now take for granted in modern server – if someone tried to install a
server with equivalent security and operational features on a production or server
network zone they’d be laughed out the door.
A basic security lemma is that if you can audit and verify, if not enforce, you may have a
chance of getting some security, and if you can’t you’re out of luck. For starters there are
no means of auditing the BMC or performing internal configuration, integrity, and
systems detection or change management; but the list is almost inexhaustible: there’s no
activity logging available, it’s impossible to install 3rd party security or defensive software
on the BMC, no host-based firewall25, no method of enforcing or checking password
complexity & strength, default there are administrative accounts with well-known or no
passwords at all that are hard to check for, there is no documentation, no means of
backing up the system, and on and on.
In addition to the basics there are some additional – and in some cases rather unique –
problems that make these especially serious:
a) The reusable passwords used for IPMI authentication are saved in clear text in flash

memory26. It can be more-or-less difficult to extract or capture the passwords, but
there are numerous ways that you can gain access to them. And most definitely if
you have physical access to the server27.

b) If you have the IPMI password for a single system, you have the password for all the
computers in that IPMI managed group of servers, which are often very large groups.
I’m unaware of any implementation that can show how long the password was
deployed, last changed, or which systems share them.

c) If you can get any of these three items – root access on a server, have an IPMI
administrative account, or shell access to the BMC, you can compromise the other
two.28

d) What you can do as an administrator or root29 on an IPMI system is substantially
worse than having root on its host computer. In addition to having complete control
of what goes on in server-land the BMC is able to manage or control pretty much
anything – hardware, software, firmware, etc. – on the computer

e) Denial of service and strange hardware attacks become easy, nasty, and very real.
DOS attacks usually bring forth a yawn, but these are a horse of a different color.
What if your server’s drives, memory, CPUs, etcetera start disappearing
intermittently or permanently? Or if your server’s memory or disks get corrupted …
occasionally. Or worse. IPMI was specifically designed to manage your server’s
hardware, and can disable, enable, or muck with just about anything on it. Your
servers are the world’s oysters now. Or… something like that.

	 13	

f) If a server or the IPMI web interface is compromised an attacker can talk to (or
change) the BMC network interface and all of the services it runs on the trusted
network30. This is because the IPMI protocol (via direct commands or the web-based
GUI) grants the power to modify or configure the server’s physical network
interfaces.

g) Controlling the BMC allows traversal of separate networks you might not want to see
or think about being connected. It seems to be generally assumed, or at least hoped
for, that IPMI and host network access were separate and neither could access the
other’s network(s)31. Not so much.

h) The BMC runs a variety of network services that are ripe for security vulnerabilities.
By default a half-dozen or so are on out-of-the-box, but others may be turned on and
a dozen or more total network services are pretty common32. All the programs are
fairly old33 and vulnerabilities are presumably shared for all the similar servers
you’ve deployed from that vendor. While you can turn off some of the services others
can’t be (like the web server that allows you to configure the system.) And even if
disabled an attacker who compromises the server can turn them back on to attack.

i) When vulnerabilities are found in the BMC you can’t apply a security fix yourself
because you don’t have BMC login access and vendors generally disallow flashing a
patched ROM image of your own; you must wait until the vendor puts out a release.

j) Having IPMI access also means (remote) console access; this in turn grants access to
the BIOS or UEFI server configuration via the vendor utilities (usually obtainable by
hitting a special key (DELETE or whatnot) right after the boot starts, which can be
monitored in via IPMI.34)

k) The BMC can monitor the host computer, but the host server has almost no visibility
to what’s going on in the BMC35. Not much to say here – the BMC has the all-seeing
eye, while the server can’t even tell what version of firmware that the BMC runs,
given that it has to ask a potentially compromised BMC to answer truthfully.

l) It’s hard enough to tell if a server has been compromised. It’s nearly impossible to
tell if the BMC is36. Ironically the vendors, in presumably trying to protect the IPMI
passwords from compromise, have made it very difficult for legitimate users or
owners from examining the BMC very difficult; you usually can’t detect anything
about the BMC’s status or state other than the vendor version number, which, of
course, is communicated to you via a secret program running on the BMC that an
attacker might modify. I ran out of time trying to get the Qemu emulator running on
a BMC, but one might imagine a BMC running a virtual BMC and how hard it would
be to figure that one out! Turtles all the way down.

m) Virtual systems can be chewed up from the inside. Of course this isn’t a great
surprise given all the rest, but there’s a paper37 that explicitly describes using the
BMC on an IBM server to generate SMI interrupts to halt the physical server briefly
in order to check the integrity of the hypervisor; it also gives an idea of some of the
power that servers have by design (and by proxy IPMI) to manage live virtual
systems.

n) Man-in-the-Middle attacks and other cryptography issues are probably not high on
your list of concerns compared with everything else, but it should be pointed a fair bit
of the traffic going to-and-from the BMC aren’t encrypted or protected against this
type of attack. If you’re merely using IPMI behind the scenes in your own trusted
network it might be fine, but BMCs will shift from encrypted traffic to unencrypted
fluidly and without much warning, and some types of traffic is never encrypted38.

	 14	

o) Evil maid attacks (EMA). A term coined by Joanna Rutkowska, an EMA is when an
attacker has physical access to a computer and can muck with it. If an attacker can
replace or modify the BMCs firmware then that firmware can not only compromise
that system, but if the maid is able to read the IPMI password…. At the time TPM or
other secure boot mechanisms were thought to be protection against such attacks,
but IPMI is rock to secure boot’s scissors; the secure boot people freely admit that
they can’t safeguard against physical access – or the equivalent.

p) De-provisioning systems really sucks now. If an attacker can recover the IPMI
password from a server it makes the end-of-life process for a computer a bit trickier
than usual. The typical best practice for end-of-life-ing a server, even in very high
security organizations, is to melt or shred any disk drives and to try and get rid of the
carcass. However the IPMI passwords stored in flash are still on the motherboard.
Remember all those 2nd hand servers you let employees buy or take home or the old
dinosaurs sold on eBay when you did the last hardware refresh? They have your
passwords on them still. The same one you use for all the production servers.
With no documentation it’s hard to say how to erase the passwords from the BMCs
flash memory – where is it stored? Is it backed up somewhere? Do hashes remain or
will the passwords remain burned into the flash storage, or…? Presumably different
vendors implement this very differently. I know of no best practices, standards, or
even guidance from vendors on how to ensure the password is really vaporized. I’m
not sure if anything other than physically destroying the motherboard should be
trusted.

q) Your servers have IPMI and the BMC functionality even if you don’t know it or use it,
and it cannot be removed. To be fair most – not all – vendors ship servers with IPMI
disabled unless you specifically request it. You can try disabling it, but I don’t know
of any way to permanently disable via software, and it can be turned back on at any
time. Remember, unless power is completely removed from the server (cord
detached!) the BMC will continue to hum along, irrespective if it’s used or if the host
is on or not. Higher level vendor implementations like iDRAC, iLO and the like can
at times be uninstalled but the BMC is usually embedded on the motherboard itself,
ready to be flashed and set into action at any time.39

r) The BMC and the server can sniff, monitor, manipulate, etc. each other’s network
traffic. Sniffing traffic can sometimes compromise IPMI keys, and may also inform
attackers where trusted systems are (such as those holding SSH private keys, or
monitoring or automation servers) if they want to attack upstream or the
management servers40.

Even if you manage to have everything locked down and make it very difficult to gain
access to the IPMI magic password it only takes one mistake or leak of information to
grant access to all the servers in the group. Worse still, unless you’re very lucky you’ll
never know anything is amiss. They now have apps that store the IPMI password, and
you know how often phones get lost, stolen, or left alone and defenseless in a hotel
room….
All of this makes known incidents very troubling as well. What is the correct response if
you suspect that a server has been compromised? And if the IPMI password can be
captured by merely being root on a server then the usual defensive strategy of having a
small group of trusted people with the password isn’t valid even if you don’t have an
outside attackers – any administrator or legitimate root user now has the ability to get
the password. While the computer forensics field is starting to get some maturity, there

	 15	

is a complete lack or research, tools, or technology on BMC forensics (although general
embedded systems security research, led by smartphone and mobile device research, has
been heating up lately.)
The ability to cross server boundaries and access both IPMI as well as the server network
illustrates a shortcoming of the current models of network architecture. Today you have
servers on various networks and zones whose connectivity is managed with firewalls,
load balancers, switches, and the like. If you have a back channel used for OOB
communication an attacker could sidestep the main network and security architecture.
That big flat network, full of back doors into all your the servers in the entire IPMI
group, plus access to the super-valuable areas you really don’t want people mucking
around with41, could now be open for business. The usual split between the logical
network topology based on applications and business units is only true on half of the
equation, now you have additional overlapping zone of trust based on IPMI groupings.
How to responsibly deal with BMC vulnerabilities is also troubling: what’s the correct
response if you find a security flaw is found for a BMC or set of vendor BMCs? Today for
your average vulnerability it’s rather common to send it to full disclosure lists along with
a security advisory, often with exploit code or details that leave little to the imagination.
Is the calculus here seems a bit different; users have very little recourse in the way of
safeguarding their systems against a new exposure since they can’t patch their own
systems or turn off the problems. Sending the problem only to the vendor is one
possible option, but traditionally researchers and full-disclosure advocates complain that
vendors are often slothful when there isn’t any public pressure being placed on them.
There would also presumably be substantial financial incentives to not disclose to the
vendor – if you discover a zero day exploit42 against a BMC you may well wish to sell it to
interested parties.
The scale is very different as well – it’s very rare when a systemic, vendor-wide, issue
comes up for all computers from a given vendor (and in this case it could involve
multiple server vendors if they share some of the same code or firmware manufacturers.)
Coordinating patches fix across all vendors in enterprise would be extraordinarily
difficult not only because you don’t know where all your servers are, you also don’t where
the specific vendor types are as well. Operational risk would be substantially higher
when trying to deploy new firmware enterprise wide than fixing an application here and
there; and of course you should remember that firmware management is typically
implemented using IPMI.
In any large organization legacy systems abound – they might run the old payroll system
or do some other crucial task that would cost millions to replace. What do you do when
a new BMC vulnerability that exploits older systems that aren’t supported by the vendor
– or the perhaps the hardware vendor doesn’t even exist anymore.
Honestly, I fully expect – without any proof but from some smoldering guns in source
code and boot images that I’ve scoured – that the various vendor sales engineers,
developers, and the like have secret methods to access the shell on the BMC for
emergencies, trouble-shooting, debugging, and the like.
Finally – even if you don’t care about this whole password thing; if you thought Stuxnet
was stealthy, at least it was running in on your CPU – how about something that has full
access to your system that’s just about impossible to directly discover (let alone analyze)
from the OS? For a long time malware has been digging deeper and deeper into the
hardware layers, the future of serious spyware and malware will continue to dive more
deeply.

	 16	

In sum: imagine trying to secure a server when you can’t login to it, patch or fix
problems, run defensive, anti-malware, or audit software on it; your basic black box with
no documentation or information available. It shares passwords with a bunch of other
important servers, stores them in clear text for attackers to access, has almost no logs
and lots of attack points, and you have to run it or take a big financial hit and throw away
remote OOB operations altogether, and even that might not work since you can’t always
turn it off. While I’m not a big fan of the “weakest link” security theory, in IPMI this
strikes me as being a fairly apt statement; your goose might already be cooked and you’re
simply asking for the orange sauce.

V. Into You Like a Train (Conclusion)

I mentioned at the start the severity of the situation seems to depend on 3 main factors:
the amount of servers in a given IPMI group, the length of time between password
changes within that group, and the difficulty of either compromising a host server or
BMC within that group. If reality is “small”, “not-to-long”, and “hard”, respectively, the
problem is smaller than the reverse. Obviously I don’t think it is, and in truth, having
brought the issue to CERT, some vendors, and a variety of others who don’t seem too
concerned, I’d freely say that for now I’m in the minority in my belief.
And while I may have painted a bleak scenario, but the confluence of issues in the IPMI
specs, the vendor add-ons, and how IPMI is used in the real world really do make one
nasty brew. Just thinking about the huge system outsourcing shops and managed system
providers with IPMI access to all of their various customers makes me rather ill. The
current situation of vendors having black boxes that can wreck havoc on an
organization’s security so readily seems ripe for exploitation. I don’t think it’s reasonable
to expect that two tightly physically coupled computers that share resources won’t leak
information or allow one to fold, spindle, and mutilate the other.
You might ask if I really believe all of this (irrespective of whether or not it turns out to
be true) then why in the heck did write this all up, am I intentionally trying to cause
problems? I’m actually trying to help – talking to people about this over the last few
months convinced me that no one was worried, but more than that no one knows
anything about IPMI et al except a rarified few. Surely I’m not the only one to come up
with this line of thinking, but there is almost no discussion or research out there on the
topic. Indeed, it would be rather surprising if it were not being currently exploited under
our virtual noses. And any discussing any of the individual issues doesn’t allow one to
connect the dots; it’s the little bits that add up to something greater, not the little bits
themselves that are important. I hope some dialogue and change might start, but I’ve
been wrong many more times than I’m right.
On the bright side, as far as I know, no one has written any really nasty BMC exploit code
that would take over a server and bend it to its will. On the downside: who would actually
know it existed unless it was found? Using a BMC as an attack or spy platform could be
done today; at least for some number of boxes it’d be pretty simple, even for me.
Leveraging the BMC for the more nasty stuff, like grubbing around in memory, the raw
disks, and all that would probably take a kernel or BMC developer to do well – not
simple for most, but attackers with the right skill set shouldn’t have much trouble. A
further downside for the white hats is that (a) given the small number of BMC firmware
manufactures that are widely OEM’d, such exploits cover a very large number of servers
in the real world, and (b) such code would probably be modestly reusable. The question
isn’t how much an attacker wants to spend to compromise your servers, but a given BMC

	 17	

or firmware add-ons in general. High stakes and green-field opportunities seem to be
abundant.
Cryptography probably won’t help much. RAKP (RMCP+ Authenticated Key-Exchange
Protocol, briefly discussed in the IPMI section) is possibly of use, but key distribution
and the simple pain of management is not insignificant. Ensuring that passwords are
better protected and not so widely shared along with mandating network encryption
would certainly help, but since IPMI lives at such a low level it’s very difficult to protect
yourself against if the computer can stab you in the back when you least expect it. TPM
or other trusted boot mechanisms aren’t commonly deployed (and especially not for
servers) but most designs explicitly state that if someone has physical access – or the
equivalent, in IPMI’s case – all bets are off. Indeed, sniffing, inserting, or modifying
cryptographic keys isn’t incredibly difficult if you can modify the basic boot process as
well as monitor and change system components and capability at will.
And of course it’s not quite time to stick our head’s in the virtual oven. There are a slew
of 3rd party OOB, IPMI, and system management systems out there that might be
leveraged for better security. Presumably some people have come up with effective
solutions but I’ve been unable to unearth them. Unfortunately firing up a large
management system always takes a lot of effort to start, and even if successful they
themselves become a very large and valuable target.
De-provisioning of servers should be a more serious concern now; if you don’t destroy
your BMC now when a server ends its service you might wish to revisit your process and
policies about how to do so in a safe manner.
We do seem to be a bit behind the ball right now – there doesn’t even exist a reasonable
set of technical security and configuration best practices, which is pretty amazing. I’ve
yet to run into any checklists or best practices other than “ensure the IPMI interface is on
a segregated network that is protected by a firewall”, and “change the default user
password” sort of platitudes. Also there is absolutely nothing available on de-
provisioning BMCs securely, from the vendors or any other literature. These would at
least raise the bar but can’t address the core, more intractable, issues.
It seems that the server vendors are in the driver’s seat to really implement change. They
simply have to release more details of their IPMI based products; transparency seems
nearly a requirement with this situation. Opening up access to 3rd parties and customers
to permit defenses, logging, and introspection should be de rigor. Telling customers how
to de-provision servers in a safe and secure manner should be fully documented. And
with so much open source used to implement the BMC more details and released code
should be widely available.
It might also be high time to create an updated IPMI specification; by all means keep the
good parts, but backwards compatibility with the worse bits would be simply dangerous.
Researchers, large vendors, and the security community are full of brilliant folks,
however; perhaps they’ve already figured all this out and are simply waiting for their
chance to spring, or I’m not in the “in” club who hears about such things. Various
vendors have done a thing or three to try and address some of the security issues I’ve
highlighted, but not much that attempts to address the root problems. And even the
nimblest of large companies can be plodding; when I worked at Sun we had a horrific
security problem that somehow survived for years (“/etc/hosts.equiv”, for those who
remember) that by default allowed remote login access without a password. It can (and
did!) take a very, very long time to fix even the simplest of problems for fear of losing
sales – after all, security is generally pretty low on the sales totem pole.

	 18	

However, if there is any response to this paper I might anticipate the IPMI experts to say
that IPMI isn’t the problem – it’s instead what the vendors did layering on all that
additional functionality on top of the specification; the vendors might balk and claim
that none of this applies to the very latest version of their particular implementation (if
at all), and if customers would only listen to them and simply did what they were told to
do all would be well. And the customers would be in the same place as before. These are
valid critiques that don’t change any of my conclusions, but I’m open to learn. C’est la
vie, and best of luck.

– dan farmer, Seattle, 1/28/13

Bibliography

An updated or live version of the bibliography may be found here. I’ve also some
additional details and pointers on my main IPMI page, which should also have the latest
and greatest version of this paper. I'm refraining from vendor-specific items unless
they're of particular note; I've put a few at the section at the end.

General IPMI

Start with the source; Intel has put out a variety of documents; in particular the IPMI
specifications, for 1.5 and 2.0 (484 and 644 pages of deathless prose, respectively) and
the IPMI CIM Mapping Guideline were invaluable:

· IPMI spex - all versions
· IPMI/CIM Mapping guide

There's a detailed (but not complete) fairly technical write-up on IPMI basics by Corey
Minyard in 2006

· IPMI - A Gentle Introduction with OpenIPMI.

It's hard to understand IPMI/BMC land without some knowledge of flash - NOR is a
"random access device appropriate for code storage application", while NAND is better
for storage (you can't directly execute code from NAND disk -it "must be loaded into
RAM memory and executed from there."

· NAND vs. NOR flash - a Flashy writeup

MTD - memory technology device; an abstraction layer for raw flash devices (NAND,
NOR, etc.) Some very useful background information on MTD:

· http://www.linux-mtd.infradead.org/

Software

Four very high quality IPMI software packages: freeipmi, ipmitools, ipmiutils, and
openipmi; in addition to the software they have some excellent documentation, write-

	 19	

ups and details about the world of IPMI. While perhaps not possessing the most
imaginative of names They're all worth checking out:

• OpenIPMI
• FreeIPMI
• IPMIutil
• IPMItool

FreeIPMI in particular has amazing documentation and is used in many vendor
offerings. Finally, there's a really nice (and fair) comparison of them on sourceforge
written by one of the authors.

I used a ton of tools, way too many to mention more than a few. On any sort of
unix/linux variant strings is just such a frickin' great tool... use that on any binaries along
with "hexdump -C"; strace is also godly.

Binwalk and the firmware-mod-kit were also useful in unraveling some details.
Luigi's signsrch provided some color commentary (windows only, but could run via wine;
e.g. - i "wine ~/signsrch.exe binary.file".) Qemu was invaluable for emulating some Arm
processor things and DosBox saved me from having to dig out the ol' DOS floppies (DOS
may never die; assorted low-level system vendor programs still run via DOS.) With the
exception of DosBox and the 4 IPMI utilities up there just about every tool had terrible
documentation or was difficult to get working on most of the systems I had (Qemu in
particular would be even more astonishing it would only run correctly.)

Mac Tools

• Wine was great for running the odd windows executable.
• DosBox - a really impressive DOS emulator for running tools meant for

floppyhood or whatever.

(mostly) Linux Tools

• MTD utils. The very useful but so-appallingly-documented-that-you-can't-belive-
it-was-written-by- anyone-with-a-desire-to-communicate-with-other-humans
MTD utils, Several Linux distros seem to have this as a package; source code avail
at git://git.infradead.org/mtd-utils.git.

• lm-sensors. Finding out about the hardware and helping monitoring computers
thingee. Hint - just type sensors-detect and follow orders.

• flashrom. Identifying, reading, writing, etc. flash chips. This is a pretty damn cool
tool. And another in a long line of so poorly documented utilities you think they
don't want you know how to use them tools. It used to be easy - "flashrom -r
/tmp/foo" would dump your flash into that file name. Now they require you to
specify all kinds of crap on the command line and have pretty much zero
examples of how most people might use the tool and a man page that is... well, a
man page. They specifically say don't write shell scripts to use the tool because
the options will change again. How friendly. If version .94 works on your system
you might try that. A really interesting tool nearly destroyed by unbelievably poor
documentation for the beginner.

	 20	

Mucking with firmware, assorted links, papers, etc.

IPMI stuff is all about embedded systems; a really nice intro to such things is
Christopher Hallinan's book, which is simply an excellent book, especially for modestly
technical beginner's such as myself:

· Embedded Linux Primer: A Practical Real-World Approach
· Project Maux Mk.II (And Mk III as well.) A talk on to install SSH on a NIC card. Arrigo
Triulzi arrigo@sevenseas.org (Arrigo's homepage:
http://www.alchemistowl.org/arrigo/)

Additional reading

Details on SMI/SMM:
· Wiki page on SMM/SMI
· http://cs.gmu.edu/~tr-admin/papers/GMU-CS-TR-2011-8.pdf , J. Wang, K. Sun, and
A. Stavrou, a GMU technical report.

A paper that discusses using IPMI to generate SMIs to enter into SMM mode:

· HyperSentry: Enabling Stealthy In-context Measurement of Hypervisor Integrity, by
A.M. Azab et al. Unfortunately the exact method used to generate SMIs from the BMC
was received under an NDA from IBM (private communication with A.M. Azab.)

CERN used a set of programs to generate daily random IPMI passwords to manage just
under 2,000 servers - a nice write-up here:

· Using the Intelligent Platform Management Interface (IPMI) at the LHC GRID, by
Hugo J. M. Cacote & M. Masi, 2007.

A nice overview of AMT security (the IPMI-like thing in PCs and such by Vassilios
Ververis:

· "Security Evaluation of Intel's Active Management Technology".

Joanna Rutkowska on using a USB stick to compromise encryption keys in general is
worth reading; she dubbed it:

· the Evil Maid Attack,

There are many references and tools to aide in USB sniffing; here are some Linux
references, but typing "USB sniffing" in any search engine will get lots of others.

· Linux USB tools

A paper on forensics & flash storage; from SMALL SCALE DIGITAL DEVICE
FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007; Marcel Breeuwsma, Martien de
Jongh, Coert Klaver, Ronald van der Knijff and Mark Roeloffs:

· Forensic Data Recovery from Flash Memory

	 21	

· Lessons Learned from Five Years of Building More Secure Software, M. Howard,
11/2007 MSDN Magazine.
· Milk or Wine: Does Software Security Improve with Age A. Ozment and S. Schecter,
2007 USENIX Security

Vendor stuff

I've downloaded many BMC ROMs and have read through more vendor manuals and
than I can count. Here are a few highlights.

Dell's security overview for iDRAC 6:

· Integrated DellTM Remote Access Controller 6 Security

HP's security overview for iLO 3:

· The HP Integrated Lights-Out Security, 7th edition

Darren Cepulis/HP's patent application has some interesting details on using SMIs with
virtual disks (and quite possibly sheds some light on how HP implements such things in
iLO.)

· "System ROM with an embedded disk image"

I’d like to thank….

I got invaluable help from a few fine folks – thank you! Alphabetically:

• Hank Bruning – President of Jblade. Hank had some great commentary on the
piece as well as having some real numbers and utilization data.

• Jarrod B Johnson – Raleigh/IBM@IBMUS. For excellent explanations of
some of the knotty salient IPMI details.

• Jesse Robbins – co-founder of Opscode. The first person who agreed with me
on the dangers of IPMI ;) Great stories of IPMI usage in the “real world” and
invaluable sanity checking.

• Avi Ruben – For his most excellent knowledge of low-level hardware, wiring my
HP for sniffing, cooking up the best chicken soup I’ve ever had, being a great
brew meister and better friend.

Intel gets an honorable mention for being so open to discuss the issues; I can’t mention
names, but thanks anyway, you know who you were and were a big help.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-‐adopters-‐list.html	
2	 This	 paper	 isn’t	 part	 of	 my	 DARPA	 work	 or	 their	 fabulous	 Fast	 Track	 program,	 but	 does	 leverage	
some	 of	 the	 experiences	 I’ve	 had	 in	 it.	 	 I’m	 currently	 writing	 a	 simple	 network	 scanner	 to	 locate	 IPMI	
systems	 and	 hope	 to	 create	 some	 best	 security	 practices	 to	 audit	 against.	 	
3	 Page	 15	 of	 the	 ATEN	 user	 manual	 for	 their	 IP9001	 pcIPcard.	
4	 “Using	 the	 Intelligent	 Platform	 Management	 Interface	 (IPMI)	 at	 the	 LHC	 GRID”,	 Hugo	 J.	 M.	 Cacote	 &	
M.	 Masi,	 2007	

	 22	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
5	 At	 http://fish2.com/ipmi/.	
6	 The	 Linux	 kernel	 paired	 with	 the	 Busybox	 utilities	 (a	 binary	 that	 emulates	 considerable	 numbers	 of	
UNIX/Linux	 utilities	 in	 a	 stripped	 down	 and	 optimized	 fashion)	 are	 very	 popular	 in	 embedded	
systems	 in	 general	 and	 on	 the	 BMCs	 I’ve	 looked	 at.	 	 I	 hear	 that	 other	 small	 OS’s	 are	 also	 used	 on	 the	
BMC,	 but	 have	 yet	 to	 personally	 see	 one.	
7	 I’ve	 a	 small	 list	 of	 BMC	 manufacturers	 along	 with	 the	 location	 of	 their	 HQ	 and	 where	 they	 are	
physically	 made.	
8	 A	 boot	 loader	 is	 simply	 a	 little	 program	 that	 allows	 a	 computer	 to	 get	 started.	 	 The	 cleverly	 named	
Das	 U-‐Boot	 is	 very	 commonly	 seen	 in	 embedded	 systems.	
9	 For	 system	 geeks	 this	 is	 a	 fascinating	 topic	 in	 its	 own	 right.	 	 An	 SMI	 interrupt	 is	 a	 non-‐maskable	
interrupt	 that	 has	 the	 highest	 priority	 of	 anything	 on	 the	 computer.	 	 Upon	 receiving	 an	 SMI	 you’re	
dropped	 into	 SMM	 mode	 and	 the	 normally	 executing	 OS,	 kernel,	 and	 application	 code	 freezes.	 	 Code	
can	 be	 executed	 depending	 on	 the	 context	 of	 the	 interrupt,	 and	 once	 done	 SMM	 is	 exited	 and	 things	
go	 back	 to	 normal	 (this	 might	 last	 a	 few	 milliseconds,	 so	 its	 mostly	 invisible	 to	 end	 users.)	 	 To	 people	
at	 higher	 levels	 things	 can	 seemingly	 happen	 between	 CPU	 ticks	 –	 sort	 of	 a	 Matrix-‐like	 bullet	 time	 for	
servers.	 	 The	 IPMI	 spec	 says	 it	 all	 –	 it	 grants	 “full	 access	 to	 system	 memory	 and	 I/O	 space”.	 	 	 See	 the	
bibliography	 for	 more	 details.	
10	 Page	 24	 of	 the	 IPMI	 version	 2.0	 specification.	
11	 I	 wonder;	 if	 IPMI	 hasn’t	 been	 enabled,	 the	 BMC	 is	 presumably	 running	 and	 waiting	 to	 hear	 from	 the	
outside	 world;	 you	 should	 be	 able	 to	 talk	 to	 it	 at	 all	 times,	 irrespective	 of	 whether	 IPMI	 is	 on	 or	 not,	
but	 if	 you	 could	 do	 so	 via	 the	 network…	 that’d	 be	 crushingly	 bad.	
12	 The	 net	 is	 full	 of	 stories	 about	 how	 various	 vendor	 implementations	 of	 IPMI	 hopping	 from	 Ethernet	
adaptor	 to	 another,	 and	 being	 uncertain	 which	 one	 it	 actually	 is	 listening	 to	 even	 if	 you	 try	 to	 force	 it	
via	 configuration.	 	 IPMI	 implementations	 seem	 to	 really	 want	 to	 talk	 to	 the	 network,	 and	 since	 it	
usually	 starts	 up	 before	 the	 OS	 does	 at	 times	 it	 tries	 to	 grab	 the	 first	 network	 port	 it	 senses	 to	 be	 on.	 	
This	 can	 lead	 to	 additional	 attacker	 opportunities.	
13	 I	 see	 various	 vendors	 claiming	 to	 have	 secured	 the	 passwords;	 I’d	 surmise	 that	 this	 might	 be	
accomplished	 by	 using	 a	 unique	 hard-‐to-‐read	 hardware	 SSL	 key	 that	 would	 decrypt	 the	 IPMI	
password	 from	 rest	 so	 it	 may	 be	 used	 by	 other	 programs.	 	 Two	 points	 –	 first,	 it’s	 very	 difficult	 to	
keeping	 sensitive	 keys	 from	 entering	 into	 memory,	 and	 secondly	 you	 could	 still	 capture	 passwords	 as	
legitimate	 users	 offered	 up	 password	 to	 the	 system	 via	 IPMI,	 the	 web	 interface,	 etc.	 	 I	 haven’t	 had	 the	
chance	 to	 look	 at	 such	 a	 system	 in	 any	 case.	
14	 On	 my	 Supermicro	 server	 the	 passwords	 were	 stored	 in	 a	 file	 in	 the	 file	 system	 in	 plain	 sight	 -‐	
they’re	 kept	 in	 “/conf/PMConfig.dat”;	 your	 own	 mileage	 may	 vary.	
15	 Apparently	 some	 Linux	 distros	 now	 have	 autorun	 also,	 traditionally	 a	 Windows	 feature	 that	
automatically	 executes	 code	 when	 a	 CD	 or	 other	 removable	 media	 is	 inserted.	 	 It	 might	 be	 interesting	
to	 try	 virtually	 mounting	 USB	 HID	 images	 to	 attack	 the	 keyboard.	 	
16	 It’s	 mandatory	 to	 keep	 embedded	 systems	 rock	 solid	 and	 stable	 because	 of	 the	 difficulties	 of	
patching	 and	 maintenance,	 so	 vendors	 don’t	 want	 to	 mess	 with	 anything	 once	 they	 reach	 a	 stable	
state	 unless	 they	 deem	 the	 problem	 critical.	 	 Security	 issues,	 if	 patched	 at	 all,	 will	 usually	 be	 rolled	
out	 in	 the	 next	 normal	 maintenance	 release;	 the	 patch	 notes	 won’t	 usually	 mention	 security	 but	 will	
focus	 on	 features	 or	 perhaps	 mention	 stability	 or	 some	 other	 veiled	 phrase.	
17	 While	 ‘s	 not	 conclusive,	 recent	 research	 seems	 to	 indicate	 the	 older	 the	 code	 the	 less	 secure	 it	 is.	 	
See	 “Milk	 or	 Wine:	 Does	 Software	 Security	 Improve	 with	 Age?”	 (A.	 Ozment	 &	 S.	 Schecter,	 2007	
USENIX	 Security)	 and	 “Lessons	 Learned	 from	 Five	 Years	 of	 Building	 More	 Secure	 Software”	 (M.	
Howard,	 2007	 MSDN	 Magazine)	 where	 Howard	 wrote	 of	 his	 experience	 at	 Microsoft:	 “No	 other	
metric	 that	 we	 measure	 is	 as	 valuable	 when	 prioritizing	 code	 review	 -‐	 not	 code	 complexity,	 not	 line	
number	 count,	 not	 code	 churn.	 The	 number-‐one	 indicator	 of	 potential	 vulnerability	 density	 is	 simply	
the	 age	 of	 the	 code.”	
18	 http://www.gnu.org/software/freeipmi/manpages/man8/rmcpping.8.html	
19	 I	 amplified	 about	 this	 at	 http://fish2.com/ipmi/dell/secret.html	
20	 Not	 only	 were	 there	 bugs	 that	 were	 obvious	 to	 a	 casual	 observer,	 but	 seemingly	 there	 was	 no	
thought	 to	 security;	 for	 example	 almost	 no	 effort	 was	 used	 to	 filter	 input	 from	 untrusted	 sources.	

	 23	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
21	 Tcpdump	 is	 a	 powerful	 packet	 sniffer	 that	 can	 listen	 to	 network	 traffic,	 and	 gdb	 is	 a	 debugger	 that	
may	 be	 used	 to	 start	 and	 stop	 programs,	 step	 through	 program	 execution,	 dump	 memory,	 etc.	
22	 A	 special	 case	 of	 this	 is	 if	 you	 are	 logged	 in	 with	 administrative	 privileges	 on	 a	 server	 –	 in	 this	 case	
no	 authentication	 is	 required	 to	 execute	 IPMI	 commands	 on	 that	 box.	
23	 Monitoring	 is	 possible,	 of	 course,	 but	 typically	 done	 sporadically	 and	 for	 trouble-‐shooting	 and	
performance	 reasons,	 not	 typically	 for	 security.	
24	 Perhaps	 there	 is	 some	 large	 enterprise	 that	 can	 make	 it	 work,	 but	 the	 larger	 you	 are	 the	 harder	 it	
gets.	
25	 The	 IPMI	 specification	 has	 something	 they	 dub	 the	 “Firmware	 Firewall”,	 but	 it	 doesn’t	 have	
anything	 to	 do	 with	 networking;	 it’s	 an	 attempt	 at	 blocking	 configuration,	 messaging	 and	 write	
operations	 on	 interfaces,	 and	 appears	 to	 be	 mostly	 designed	 for	 use	 in	 big	 blade	 servers.	 	 It	 also	
seems	 pretty	 worthless	 (it’s	 complex,	 no	 examples	 exist	 in	 the	 world,	 and	 no	 software	 to	 test	 or	 audit	
the	 configuration,	 etc.),	 but	 perhaps	 it’s	 used	 somewhere.	 	
26	 This	 is	 an	 unfortunate	 by	 product	 of	 the	 IPMI	 specification,	 which	 sometimes	 says	 you	 have	 to	 use	
or	 send	 the	 password	 in	 unencrypted	 form.	 	 Some	 vendors	 put	 up	 a	 fight	 here,	 and	 try	 to	 block	
sections	 of	 the	 ROM	 from	 casual	 reading,	 or	 semi-‐encrypt	 the	 passwords	 and	 extract	 them	 at	
runtime,	 but	 an	 attacker	 can	 still	 capturing	 the	 BMC’s	 RAM	 or	 reverse	 engineering	 the	 boot	 process	
to	 reveal	 them.	 	 Admittedly	 with	 limited	 experience,	 but	 it	 seems	 simple	 to	 access	 the	 IPMI	
passwords	 once	 on	 the	 BMC.	
27	 See	 my	 web	 site	 for	 an	 enumeration	 of	 at	 least	 some	 of	 the	 methods.	 	 And	 compromising	 a	 server	
by	 physically	 attacking	 it	 is	 only	 cheating	 if	 it	 only	 grants	 you	 access	 to	 that	 single	 computer,	 not	
thousands	 of	 others.	 	
28	 This	 is	 in	 part	 because	 of	 the	 intertwined	 nature	 of	 IPMI	 and	 the	 server	 combined	 with	 the	 brittle	
nature	 of	 the	 BMC	 architecture	 and	 security	 model.	 	 Root	 accounts	 on	 a	 server	 can	 create	 local	
administrative	 IPMI	 accounts	 without	 any	 additional	 authentication.	 	 The	 most	 straightforward	 way	
is	 to	 simply	 reboot	 the	 system	 onto	 media	 of	 your	 choice	 and	 mount	 the	 local	 drives;	 you	 may	 then	
install	 a	 new	 account,	 a	 new	 OS,	 or	 do	 whatever	 you	 wish	 –	 after	 all,	 provisioning	 servers	 is	 one	 of	 the	
basic	 uses	 of	 IPMI.	
29	 I’ll	 use	 root	 a	 lot	 in	 this	 paper,	 which	 is	 the	 name	 of	 the	 UNIX/Linux	 all-‐powerful	 administrator	
account.	 	 I	 could	 say	 administrator	 or	 whatever	 the	 system	 account	 is	 on	 your	 OS	 of	 choice,	 but	 for	
many	 root	 is	 a	 short-‐hand	 way	 to	 refer	 to	 the	 administrative	 account	 or	 having	 administrative	
privileges.	 	 IPMI	 doesn’t	 care	 what	 OS	 the	 host	 uses,	 which	 is	 part	 of	 its	 charm.	
30	 It	 appears	 that	 some	 vendors	 try	 to	 put	 a	 hard-‐coded	 wall	 between	 the	 server	 and	 the	 BMC	 to	
disallow	 server-‐to-‐BMC	 network	 communications.	 	 If	 this	 can’t	 be	 circumvented,	 an	 attacker	 may	
simply	 talk	 to	 the	 BMC	 from	 a	 2nd	 accomplice	 computer	 after	 changing	 the	 BMCs	 network	 address.	
31	 This	 is	 definitely	 true	 if	 you	 have	 compromised	 the	 BMC,	 and	 possibly	 true	 if	 you	 simply	 have	 IPMI	
control,	 depending	 on	 your	 server	 vendor	 as	 well	 as	 how	 you	 run	 your	 network	 and	 manage	 IPMI.	 	 If	
you	 use	 a	 dedicated,	 IPMI-‐only	 management	 ethernet	 jack	 on	 your	 server	 I	 don’t	 know	 of	 a	 way	 for	 a	
server	 to	 communicate	 with	 that	 interface.	 	 But	 if	 you	 share	 physical	 connections	 or	 use	 a	 network	
interface	 that	 the	 server	 can	 access	 then	 this	 is	 true	 in	 general	 as	 well.	
32	 Pretty	 much	 everyone	 can	 run	 our	 old	 friend	 telnet	 along	 with	 SSH,	 VNC,	 web	 (http/https),	 email,	
the	 IPMI	 protocol	 itself	 as	 well	 as	 a	 variety	 of	 custom	 programs	 to	 serve	 remote	 virtual	 media	 along	
with	 other	 IPMI	 custom	 services.	 	 They	 are	 almost	 always	 daemons	 or	 agents	 are	 running	 on	 the	
BMC.	
33	 It’s	 mandatory	 to	 keep	 embedded	 systems	 rock	 solid	 and	 stable	 because	 of	 the	 difficulties	 of	
patching	 and	 maintenance,	 so	 vendors	 don’t	 want	 to	 mess	 with	 anything	 once	 they	 reach	 a	 stable	
state	 unless	 they	 deem	 the	 problem	 critical.	 	 Security	 issues,	 if	 patched	 at	 all,	 will	 usually	 be	 rolled	
out	 in	 the	 next	 normal	 maintenance	 release;	 the	 patch	 notes	 won’t	 usually	 mention	 security	 but	 will	
focus	 on	 features	 or	 perhaps	 mention	 stability	 or	 some	 other	 veiled	 phrase.	
34	 The	 BMC	 has	 the	 potential	 to	 read	 and	 write	 directly	 to	 them	 as	 well.	
35	 More	 on	 this	 in	 section	 2,	 “The	 BMC.”	 I	 assume	 that	 this	 is	 because	 vendor	 probably	 realized	 that	
you	 don’t	 want	 people	 reading	 those	 passwords,	 and	 attempt	 to	 block	 you	 from	 reading	 the	 flash	
storage	 or	 mucking	 with	 the	 IPMI	 subsystem.	 	 This	 also	 means	 that	 you	 can’t	 make	 backups	 of	 your	

	 24	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
flash	 or	 tell	 if	 it’s	 been	 modified,	 as	 a	 compromised	 BMC	 can	 simply	 say	 what	 you’re	 expecting	 or	
wanting	 to	 hear.	
36	 At	 least	 as	 it	 stands	 today;	 this	 will	 presumably	 change	 over	 time	 as	 people	 gain	 more	 exposure	 to	
IPMI	 issues,	 tools	 and	 procedures	 get	 developed,	 vendors	 change,	 etc.	 	 Even	 if	 any	 forensic	 tools	 or	
methodologies	 existed	 for	 BMCs	 you	 couldn’t	 use	 them	 unless	 you	 could	 login	 to	 the	 BMC	 to	 kick	 the	
virtual	 tires.	
37	 “HyperSentry:	 Enabling	 Stealthy	 In-‐context	 Measurement	 of	 Hypervisor	 Integrity”;	 A.M.	 Azab	 et	 al.	 	 	 	
Unfortunately	 the	 exact	 method	 used	 to	 generate	 SMIs	 from	 the	 BMC	 was	 received	 under	 an	 NDA	
from	 IBM	 (private	 communication	 with	 A.M.	 Azab.)	
38	 When	 communicating	 to	 BMCs	 software	 as	 software	 goes	 from	 IPMI	 version	 2.0	 (sometimes	
encrypted)	 to	 version	 1.5	 (never	 encrypted)	 or	 when	 using	 various	 vendor	 services	 you’ll	 get	
encryption	 sometimes.	 	 It’s	 usually	 hidden,	 undocumented,	 or	 you	 have	 to	 hunt	 to	 figure	 it	 out	 (or	
drag	 out	 the	 packet	 sniffer.)	
39	 Unlike	 regular	 hard	 drives	 flash	 memory	 can	 only	 be	 written	 to	 a	 fairly	 small	 amount	 of	 times	
before	 failing.	 	 It	 might	 be	 possible	 to	 kill	 off	 a	 BMC	 with	 a	 lot	 of	 brute	 force	 writing,	 but	 with	 the	
implementation	 details	 so	 scarce	 I	 wouldn’t	 count	 on	 it	 to	 be	 a	 reliable	 way.	 	 A	 small	 nail	 and	 a	
ballpeen	 hammer	 might	 be	 effective	 at	 killing	 the	 BMC,	 but	 who	 knows	 if	 that’d	 kill	 off	 any	 server	
functionally	 –	 the	 Southbridge	 and	 BMC	 have	 an	 odd	 relationship	 and	 it	 might	 have	 undesired	
consequences.	 	 Some	 vendors	 may	 have	 a	 setting	 to	 really	 disable	 the	 BMC.	
40	 This	 is	 a	 presumption	 on	 my	 part,	 based	 on	 the	 evidence	 I’ve	 gathered	 so	 far.	 	 At	 least	 some	 of	 the	
data	 may	 be	 sniffed;	 but	 in	 an	 out	 of	 the	 box	 install	 not	 all	 servers	 allow	 network	 monitoring	 from	 the	
server	 to	 the	 BMC	 or	 vice-‐versa.	 Data	 is	 admittedly	 in	 seriously	 short	 supply	 for	 me	 here.	 	 However,	 I	
have	 been	 able	 to	 watch	 the	 BMC	 from	 a	 Dell	 server,	 and	 it	 seems	 a	 foregone	 conclusion	 that	 given	
the	 BMC’s	 power	 listening	 to	 the	 server’s	 network	 traffic	 would	 be	 fairly	 straightforward.	 	 It	 could	 be	
a	 matter	 of	 changing	 network	 or	 kernel	 settings,	 the	 network	 card’s	 firmware	 or	 configuration,	 or	
perhaps	 even	 that	 some	 vendors	 have	 figured	 a	 way	 to	 really	 separate	 the	 two.	 	 I’ve	 written	 a	 bit	
more	 about	 this	 on	 my	 web	 site.	
41	 These	 hyper-‐crucial,	 crown-‐jewelesque,	 super-‐back	 end	 types	 of	 assets	 also	 have	 some	 of	 the	 worst	
security	 in	 your	 environment.	 	 I	 wrote	 an	 essay	 about	 this	 that	 may	 be	 found	 at	
http://trouble.org/?p=262.	
42	 A	 zero	 day	 exploit	 is	 when	 an	 attack	 exploits	 a	 previous	 unfixed	 or	 unknown	 security	 problem	 that	
leads	 to	 a	 system	 compromise.	 	 Once	 it	 is	 finally	 reported	 to	 the	 vendor	 (or,	 conversely,	 to	 the	 larger	
public)	 the	 clock	 can	 start	 ticking	 to	 fix	 or	 address	 the	 problem.	 	 	 Bruce	 Schneier	 wrote	 a	 nice	 piece	 in	
Forbes	 about	 the	 economics	 and	 ethics	 of	 zero	 day	 exploits.	

